2-methoxyestradiol alters cell motility, migration, and adhesion.

نویسندگان

  • Martin Sattler
  • Laura R Quinnan
  • Yuri B Pride
  • Jessica L Gramlich
  • Stephanie C Chu
  • Gaelle C Even
  • Stine-Katherin Kraeft
  • Lan Bo Chen
  • Ravi Salgia
چکیده

The effect of 2-methoxyestradiol, 2ME2, an endogenous metabolite of 17beta-estradiol (E2), on cell growth and cytoskeletal functions in a BCR-ABL-transformed cell line model was investigated. We determined the interaction of 2ME2 with STI571 (Gleevec, imatinib mesylate) in STI571 drug-sensitive and -resistant cell lines. In cells expressing BCR-ABL, STI571 cooperated with 2ME2 in reducing cell growth, and STI571-resistant cells were sensitive to 2ME2 treatment. 2ME2 also inhibited growth of several cancer cell lines by a mechanism independent of BCR-ABL. BCR-ABL transformation leads to altered motility, increased adhesion, and spontaneous migration in different in vitro model systems. 2ME2 was found to specifically inhibit the spontaneous motility of BCRABL-transformed Ba/F3 cells and to change the morphology and volume of treated cells. Cells attached to fibronectin-coated surfaces showed a reduced number of filipodia and lamellipodia. In addition, 2ME2 significantly reduced BCRABL-mediated adhesion to fibronectin. The spontaneous migration of BCR-ABL-transformed cells through a transwell membrane also was found to be significantly decreased by 2ME2. Cytoskeletal changes were accompanied by alteration of tubulin formation, distinct from paclitaxel treatment. These results demonstrate that 2ME2 treatment of transformed cells strongly reduces cytoskeletal functions and may also be useful for the treatment of cancers with high metastatic potential. Combination of 2ME2 with other anticancer drugs may be beneficial to treatment of drug-resistant cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration.

The matricellular extracellular matrix protein thrombospondin-1 (TSP1) stimulates focal adhesion disassembly through a sequence (known as the hep I peptide) in its heparin-binding domain. This mediates signaling through a receptor co-complex involving calreticulin and low-density lipoprotein (LDL) receptor-related protein (LRP). We postulate that this transition to an intermediate adhesive stat...

متن کامل

NO alters cell shape and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B activation.

Cell motility is an important determinant of vascular disease. We examined mechanisms underlying the effect of nitric oxide (NO) on motility in cultured primary aortic smooth muscle cells from newborn rats. The NO donor S-nitroso- N-acetyl-penicillamine (SNAP) increased the activity of protein tyrosine phosphatase 1B (PTP-1B). This effect was mimicked by a cGMP analog and blocked by the guanyl ...

متن کامل

N-cadherin sustains motility and polarity of future cortical interneurons during tangential migration.

In the developing brain, cortical GABAergic interneurons migrate long distances from the medial ganglionic eminence (MGE) in which they are generated, to the cortex in which they settle. MGE cells express the cell adhesion molecule N-cadherin, a homophilic cell-cell adhesion molecule that regulates numerous steps of brain development, from neuroepithelium morphogenesis to synapse formation. N-c...

متن کامل

Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti- adhesive

Regulation by the extracellular matrix (ECM) of migration, motility, and adhesion of olfactory neurons and their precursors was studied in vitro. Neuronal cells of the embryonic olfactory epithelium (OE), which undergo extensive migration in the central nervous system during normal development, were shown to be highly migratory in culture as well. Migration of OE neuronal cells was strongly dep...

متن کامل

Corrigendum: Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2003